Рабочая модель двигателя Стирлинга с бесплатной доставкой по всей России. Узнать больше..

От проблемы Кука до проблемы Путника!

Обсуждение новых математических изысканий.
Правила форума
Научный форум "Математика"

От проблемы Кука до проблемы Путника!

Комментарий теории:#1  Сообщение Devami » 13 июл 2010, 16:14

В математике есть одна нерешённая задача. Проблема Кука.
Стивен Кук сформулировал проблему так: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки.

Если относиться философски к её решению, то она решена уже давно такими лицами как Мендель. Она была решала быстрее чем это было доказано....

Вот и проблема с Путником. А это проблема... На многих форумах математических, мною выставлялась тема о нахождении предела последовательности. Где были одни строго математические условия. И везде ответ легко находился и был одинаков. Предел
X это плюс-бесконечность, а Y — это 0.

Но когда, выставлялась тема с Путником, откуда в принципе и брались расчёты с последовательностью X и Y, то уже сложности с ответом.
И если в первой теме надо было найти предел последовательности X, то в вопросе с Путником это итог X. То есть на какое количество не наступит Путник.
Предел и итог, это же одно и тоже. То, к чему стремиться действие.

А вопрос то как мне кажется и не сложный.

Путник, решил пройти путь из бесконечного количества квадратов выстроенных в один ряд, и при этом наступить на все квадраты. Но, при каждой новой попытке он должен увеличивать длину своего шага.
На деле же, путник при первой попытке прошагивал Х(1) квадратов, при второй Х(2)...и так далее.
При этом:

Х(1)< Х(2) <Х(3) <Х(4)<...и так далее.

Разве у Путника есть шанс наступить на все, или же на конечное количество квадратов?!
Разве не при исходе 0 или же любого конечного числа, результат должен быть не таким?:
Х(1)>Х(2) >Х(3) >Х(4)>...и так далее.

Так вот..может быть здесь спрятана проблема Кука?! Предел последовательности Х мы определяем легко, а ответ с итогом Х(числом квадратов на которые не наступит Путник) уже не можем найти ответ.

В принципе, процесс пути Путника, можно записать и по иному. Не через величину прошагивания.

1 попытка.
Если квадраты разбить численно на группы по 5 квадратов, то мы получим бесконечное количество групп по 5 квадратов в каждой.
Так вот, пройдя путь, Путник наступил в каждой группе на 2 квадрата.
2 попытка.
Если оставшиееся не тронутыми квадраты разбить численно на группы по 7 квадратов, то мы получим бесконечное количество групп по 7 квадратов в каждой.
Так вот, пройдя путь, Путник наступил в каждой группе на 2 квадрата.

И так далее. При этом количество квадратов в новой группе это следующее простое число.
И Путник наступал на квадраты с такими темпами:
2/5...2/7...2/11...2/13...2/17...и так бесконечно далее.

Если следовать тому что Путник наступает постепенно первые квадраты от начала, то неважно сама система наступлений и мы в итоге придём к 0 квадратов на которые не наступала нога Путника.

Но тогда мы увидим:

Вот к примеру из первых 5 мы наступили на 2. Осталось 3. Тогда добавляем 4 и получаем 7.
Теперь от 7 наступаем на 2 и получаем 5. Далее до 5 добавляем 6, что бы в группе было 11, и наступаем на 2. Осталось 9.
Далее, добавляем 4 и получаем в группе 13. Наступаем на 2 и получаем 11.
Далее, добавляем 6 и получаем в группе 17. Наступаем на 2 и получаем 15.
Далее, добавляем 4 и получаем в группе 19. Наступаем на 2 и получаем 17.
Далее, добавляем 6 и получаем в группе 23. Наступаем на 2 и получаем 21.
И так далее.
Что мы видим?
Вот как шло увеличение остатка после наступления:
3..5..9..11...15...17...21..
Как мы видим количество на которое мы не можем наступить, растёт...и мы его как бы выталкиваем вперёд...Если убираем первые. Но..наши квадраты «прибиты» к дороге, и поэтому это количество должно располагаться на своём месте.

Вот и поэтому вопрос вопросов.
И это как оказалось ТРУДНЫЙ вопрос!. Если честно признаться, то,ранее я думал иначе.
А вопрос в том же:»На какое количество квадратов не наступит Путник? Разве не на бесконечное?!»

Код ссылки на тему, для размещения на персональном сайте | Показать
Код: выделить все
<div style="text-align:center;">Обсудить теорию <a href="http://www.newtheory.ru/mathematics/ot-problemi-kuka-do-problemi-putnika-t448.html">От проблемы Кука до проблемы Путника!</a> Вы можете на форуме "Новая Теория".</div>
Devami
 
Сообщений: 5
Зарегистрирован: 28 июн 2010, 20:58
Благодарил (а): 0 раз.
Поблагодарили: 0 раз.

От проблемы Кука до проблемы Путника!

Сообщение Рекламкин » 13 июл 2010, 16:14

Двигатель Стирлинга Рабочая модель двигателя Стирлинга с бесплатной доставкой по всей России. Узнать больше..

Рекламкин

 

Вернуться в Математика

Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1