Адекватна ли пространственно-временная модель?

Обсуждение новых теорий по физике.
Правила форума
Научный форум "Физика"

Re: Адекватна ли пространственно-временная модель?

Комментарий теории:#11  Сообщение alexandrovod » 26 мар 2017, 12:02

Андрей Р писал(а):...Связи любого осциллятора должны быть только со смежными осцилляторами ( Расстояния до ближайших осцилляторов от рассматриваемого, должны быть равны)
Тогда путь распространение возбуждения от одной точки пространства до другой, можно рассмотреть в виде графа таких связей и рассчитать перенос энергии.

Полностью согласен. Невозбуждённые осцилляторы обязаны быть равноправны и их расположение изотропно и длина (расстояние до общей точки-сингулярности, взаимодействия) меньше расстояния между свободными концами. То есть только 4, 6 , 12.
С уважением Овод

Код ссылки на тему, для размещения на персональном сайте | Показать
Код: выделить все
<div style="text-align:center;">Обсудить теорию <a href="http://www.newtheory.ru/physics/adekvatna-li-prostranstvenno-vremennaya-model-t4206-10.html">Адекватна ли пространственно-временная модель?</a> Вы можете на форуме "Новая Теория".</div>
alexandrovod
 
Сообщений: 2230
Зарегистрирован: 06 май 2014, 17:34
Предупреждения: 1
Благодарил (а): 390 раз.
Поблагодарили: 156 раз.

СообщениеСообщение было удалено | удалил: Administration | 06 апр 2017, 17:39.
Причина: Пункт правил 4.6.1.

Re: Адекватна ли пространственно-временная модель?

Комментарий теории:#13  Сообщение npduel » 27 мар 2017, 19:51

alexandrovod писал(а): У меня возникает несколько другой вопрос - как поперечное возбуждение и даже продольное полностью передаётся ортогональным осцилляторам без изменения своей поляризации, по этому и предложил их расположение в форме пентадодекаэдра (иконосаэдра). При таком расположении вероятность передачи на не параллельный осцилятор = 1/137,8 ...

Крауфорд своей моделью осцилляторов (см. тему "Модель Крауфорда") смоделировал уравнение Клейна-Гордона, т.е. уравнение одной из компонент волны де Бройля микрочастицы, которая не отображает спиновые свойства частицы, не представляющие интереса для этой темы. Эти свойства описываются полным набором взаимосвязанных компонент, как в уравнении Дирака связаны четыре компоненты волн де Бройля электрона. Ни в модели Крауфорда, ни в уравнении Клейна-Гордона, которое модель Крауфорда моделирует после предельного перехода вполне адекватно, нет стохастики: вторичные волны распространяются сферически вполне детерминированно. Именно модель Крауфорда показала, что случайность движений в микромире проявляется не в движении свободной частицы, а во взаимодействии её с другими частицами.
Аватар пользователя
npduel
 
Сообщений: 342
Зарегистрирован: 23 окт 2016, 10:53
Откуда: Подмосковье
Благодарил (а): 14 раз.
Поблагодарили: 34 раз.

Пред.

Вернуться в Физика

 


  • Похожие темы
    Ответов
    Просмотров
    Последнее сообщение

Кто сейчас на форуме

Сейчас этот форум просматривают: astrolab, Bing [Bot], Rambler [Bot], Yandex [Bot] и гости: 4