Если т. н. "физический вакуум" это "субстанциональная вещь", то есть чем-то напоминает пространство, в котором разворачивается взаимодействие материальной субстанции (частицы, кванты), то оно в своих свойствах только на словах представляется экономно организованной структурой. Не может в таком пространстве все связно и однозначно расположиться.
Я ведь не настаиваю на том, что считаю свою модель, в которой пространство организуется как суперпозиция "локальных" пространств взаимодействующих объектов, единственно правильной теоретической моделью. Я четко показываю, как в такой модели решается вопрос ограничения взаимодействия и скорости. Причем, вопросы решаются без мифического роста энергии и массы взаимодействующих объектов. Вернее, энергия то растет, но все меньше и меньше при ускорении частицы.
Поймите простую вещь. Это ведь не форум узких специалистов, которые решают локальные проблемы в рамках раз и навсегда установленных парадигм. Тут могут быть и весьма необычные подходы. И если модель предложена, ее надо не забалтывать (я извиняюсь), а детально проанализировать и высказаться по существу тех неувязок, которые выявляются при ближайшем ее рассмотрении.
Я почему говорю о том, что в принятой большинством релятивистской доктрине есть весьма существенные несоответствия тому же экспериментальному опыту. Мало того, что его не хотят замечать. Ради спасения этой сомнительной концепции изощряются в придумке новых частиц, новых полей, новых принципов. Только бы не разрушить саму концепцию.
Еще и еще раз напомню вам факты.
Вопрос: как на ускорителях проявляется релятивистский рост массы? Да, отвечают, всё так же, одним-единственным способом: через уменьшение эффективности воздействия электромагнитных полей на быстро движущуюся заряженную частицу – как и в самых первых опытах такого рода с быстрыми электронами (опыты Бухерера, Кауфмана и др.). Чем больше скорость электрона, тем более сильное магнитное воздействие требуется приложить, чтобы искривить его траекторию. При большом желании, результаты этих опытов, действительно, можно истолковать так: по мере увеличения скорости частицы, у неё увеличивается масса, а вместе с ней и инертные свойства – так что магнитное воздействие на такую частицу вызывает всё меньший отклик.
Но ведь возможны варианты! Известен универсальный принцип: воздействие на объект стремится к нулю, если скорость объекта приближается к скорости передачи воздействия. Вот классический пример из механики: ветер разгоняет парусник. Когда скорость парусника становится равной скорости ветра, ветер перестаёт на него действовать. Аналогичные вещи происходят при раскрутке ротора асинхронной машины вращающимся магнитным полем, а также при взаимодействии электронов с замедленной электромагнитной волной в лампе бегущей волны – и здесь, как полагают, массы тоже остаются самими собой. Лишь для методики магнитного отклонения заряженной частицы делается исключение, что в определенной степени странно.
На основании чего делается такое исключение? Скорость заряженной частицы может быть измерена с помощью различных методик, напрямую реализующих понятие скорости, т.е. основанных на измерении промежутка времени, в течение которого преодолевается известное расстояние. Если на заряженную частицу, движущийся с измеренной скоростью v, подействовать поперечным магнитным полем с напряжённостью H, то частица станет двигаться по траектории с радиусом кривизны r:
r = m·v·( 1 / (e·H·√(1 – (v2/c2))) = m·v·γ / e·H где γ = 1 / √(1 – (v2/c2))
где m и e - соответственно, масса покоя и заряд частицы, - релятивистский фактор. Анализ искривлений треков сталкивающихся частиц показывает, что сохраняется сумма их релятивистских импульсов mv. Раз сохраняется релятивистский импульс – значит, мол, он и реален! Но ведь те же самые трековые данные допускают и другую интерпретацию. Если считать, что релятивистский корень в (4.5.1) описывает уменьшение напряжённости магнитного поля, которое воспринимает движущийся электрон – в согласии с релятивистскими преобразованиями компонент поля [Л2] – то наблюдаемый радиус кривизны траектории будет соответствовать не истинному значению импульса, а в раз завышенному. С учётом поправок на это завышение, все трековые данные будут говорить о сохранении именно классического импульса mv. Ибо релятивистский фактор не будет присущ импульсу, как таковому, а будет являться следствием нелинейности шкалы в данной измерительной методике.
Впрочем, можно до хрипоты спорить – так или этак интерпретировать трековые данные. Но мы обращаем внимание на бесспорный факт: вывод о релятивистском увеличении энергии частицы делается по результатам её взаимодействия только с полями – когда от этой чудовищной энергии никому «ни жарко, ни холодно». Давайте же использовать и другие методики измерения энергии частицы – по результатам её взаимодействия с веществом! Это будет прямое и честное измерение – если измерить всю энергию, в те или иные формы которой превратится энергия частицы! Здесь-то и находится «момент истины»: прямые и честные измерения показывают, что никакого релятивистского роста энергии не существует.
Ну, действительно: кому удалось, из одного релятивистского электрона, извлечь, при его взаимодействии с веществом, энергию в несколько ГэВ? Или хотя бы в несколько МэВ? Давайте посмотрим!
Вот, например, заряженные частицы оставляют треки в камере Вильсона или в пузырьковой камере. При образовании этих треков, превращения энергии, по меркам микромира, огромны – но они происходят, в основном, не за счёт энергии инициирующей частицы. Здесь регистрирующая среда пребывает в неустойчивом состоянии – это переохлаждённый пар или перегретая жидкость. Частица тратит кинетическую энергию лишь на создание ионов в среде – и эти потери энергии невелики. А ионы становятся центрами бурной конденсации или парообразования. Успей сфотографировать очаги фазовых превращений в среде – вот и трек частицы. Но энергия этих фазовых превращений – несоизмеримо больше ионизационных потерь частицы.
А можно ли измерить сами ионизационные потери? Конечно, можно. В своё время в экспериментальной физике широко использовались так называемые пропорциональные счётчики. Влетев в этот прибор, частица растрачивает свою кинетическую энергию на ионизацию атомов вещества-наполнителя – принципиально до полной своей остановки. Чем больше энергия частицы, тем больше ионов она создаёт, и тем больше генерируемый прибором импульс тока. Обращаем внимание: средняя энергия, требуемая для создания одной пары ионов, совсем невелика – это два-три десятка эВ. По отношению к такой энергии, говорить о релятивистском завышении неуместно. Поэтому к показаниям пропорциональных счётчиков следовало бы относиться с большим доверием – поскольку имеются веские основания полагать, что они измеряют энергию частицы честно. И вот как выглядят результаты этих честных измерений. В «нерелятивистской области», пока энергия частиц малая, результаты её измерения пропорциональными счётчиками с результатами измерений по методике магнитного отклонения. Но в «релятивистской области» единство измерений нарушается: энергия, измеряемая по магнитной методике, лезет в релятивистскую бесконечность, а энергия, измеряемая пропорциональными счётчиками, выходит на насыщение и дальше не растёт. Причём, не похоже на то, что счётчики «шалят»: все они – при разных типах и конструкциях – показывают одно и то же. А именно: никакого релятивистского роста энергии нет.
Была ещё одна методика прямого измерения тормозных потерь быстрых заряженных частиц – в фотоэмульсиях. Здесь частица тоже теряет энергию на ионизацию атомов, причём каждый образовавшийся ион становится центром формирования фотографического зёрнышка. И эти зёрнышки различимы под микроскопом. Значит, число ионизаций, произведённых частицей, можно пересчитать, а затем умножить это число на энергию одной ионизации – вот и получится исходная энергия частицы! И что же? А то, что и здесь всё получалось, как и в пропорциональных счётчиках. В «нерелятивистской области», число зёрнышек, умноженное на энергию одной ионизации, вполне соответствовало результатам «магнитной» методики. А в «релятивисткой области» число зёрнышек выходило на постоянную величину и дальше, практически, не росло. И, опять же, использовались различные составы фотоэмульсий. И опять же, все они говорили одно и то же: если подходить к вопросу методом простого всматривания, то никакого релятивистского роста энергии не обнаруживается. И опять пришлось выдвигать гипотезы ad hoc. Насчёт того, что быстрая частица теряет энергию в фотоэмульсиях не только на ионизацию: есть, якобы, ещё и «недетектируемые» потери энергии – на возбуждение атомов или ядер, на выбивание нейтральных частиц, на излучение. Пикантность ситуации в том, что эффективности разных каналов этих «недетектируемых потерь» по-разному зависят от энергии частицы – но в сумме эти потери, якобы, так согласованно нарастают, что в точности маскируют ожидаемый релятивистский рост детектируемых потерь!
Были эксперименты, где «магнитная» и «немагнитная» методики встречались, так сказать, нос к носу. Это получалось там, где измеряли импульс отдачи у атома, из ядра которого выстреливался релятивистский электрон при бета-распаде. Здесь устраивалась «очная ставка» двум методикам: импульс отдачи атома измерялся по «немагнитной» методике, а импульс выстреливаемого электрона – по «магнитной». Первые же опыты такого рода поставили в крайне затруднительное положение учёных, стоявших на позициях закона сохранения релятивистского импульса. Ведь импульс электрона получался существенно больше, чем импульс отдачи атома. Логика здесь такова: импульс электрона измерялся по «магнитной» методике – значит, правильно измерялся именно он. Следовательно, импульс отдачи у атома оказывался чудовищно меньше, чем требовалось по закону сохранения релятивистского импульса. Т.е., подавляющая часть импульса отдачи куда-то исчезала.
Ради устранения этого противоречия предположили, что существует довольно экзотическая частица под условным названием «нейтрино». По свойству исключительно слабо взаимодействовать с веществом, нейтрино резко отличается от остальных частиц, испускаемых при радиоактивных превращениях: нейтрино «умирает» на много порядков реже, чем рождается. Налицо абсурдная асимметрия, которая до сих пор не имеет объяснения.
Добавлено спустя 11 минут 40 секунд:Re: Еще раз об независимости скорости света от системы координатМожно было до некоторой степени избегать больших завышений, если при калибровке методом магнитного отклонения использовать частицы с достаточно большой массой – поскольку энергия, которая близка к предельной у электрона, далека от предела у протона. Отсюда, кстати, вытекает возможность получения ещё одного свидетельства о наличии ограничения у кинетической энергии частицы. Известно множество ядерных реакций с порогами всего в несколько МэВ. Эти реакции инициируются, например, протонами, для которых энергия в несколько МэВ является ничтожной, и есть гарантия, что пороги при этом измеряются без релятивистского завышения. Эти же реакции инициируются и нейтронами, и гамма-квантами – была бы их энергия выше пороговой. Электроны, которые имели бы энергию в несколько МэВ, инициировали бы эти реакции, казалось бы, ещё охотнее, чем протоны – ведь электроны притягиваются к ядру, а не отталкиваются от него. Но нет: что-то мешает электронам инициировать ядерные реакции. Считается, что релятивистские электроны, при взаимодействии с ядрами, испытывают почему-то лишь упругое рассеяние. Налицо странная асимметрия: вылететь из ядра, прихватив оттуда немалую энергию, электрон может (при бета-распаде) – а ударить по ядру, сообщив ему такую же энергию, электрон не может! Что по этому поводу говорит
физика высоких энергий? К сожалению – ничего вразумительного. Высокие энергии оказалось гораздо практичнее измерять не по электронной, а по протонной шкале. Из опыта ясно, что, скажем, 3 МэВа у протона – это полноценные 3 МэВа, а 3 МэВа у электрона – это пустышка.